Рубрика «машинное обучение»

Настраиваю карточку для тестов (шутка)

Настраиваю карточку для тестов (шутка)

Продолжаем статьи про практические тесты актуальных картонок от Nvidia (A5000 Ada, A100, 3090 и A10Читать полностью »

Есть ли у AMD перспективы в AI-ML-DL. Часть 2 - 1

Привет! Это снова Ефим Головин, все еще старший MLOps-инженер в Selectel. В прошлой статье в попытках оценить перспективы AMD в ML мы внезапно погрузились в дебри документации NVIDIA. А теперь пора взглянуть на то, что происходит, собственно, у AMD. Забегая вперед, могу сказать, что во многом «красные» оперируют очень похожими терминами. Это вполне понятно и логично, поскольку и NVIDIA их не из воздуха взяли. Все это так или иначе корнями уходит в идеи, появившиеся и описанные задолго до появления терминов «CUDA», «SM», архитектуры Tesla и т. д.Читать полностью »

Абстракция — не новинка в мире разработки, но в машинном обучении абстракция без контроля превращает автоматизацию в архитектурный риск.

AutoML для многих организаций стал входной точкой в машинное обучение. Он обещает именно то, что хотят услышать команды, находящиеся под давлением: вы приносите данные, а мы займёмся моделированием. Не нужно управлять пайплайнами, настраивать гиперпараметры или изучать scikit‑learn и TensorFlow — просто кликай, перетаскивай и развёртывай.

На первых порах — сплошной восторг.

Читать полностью »

Дело было в начале третьего курса учёбы в МФТИ, во времена COVID. Более полугода я активно изучал ML: прошёл несколько курсов, выучил теорию, за месяц прошёл парочку собеседований — в Ozon, Сбер и Яндекс. Там всё было более чем цивильно: очень приятные интервьюеры, простые, добрые люди. Во время собеседований помогали, подсказывали молодому, зелёному ботеру. Остались исключительно приятные воспоминания.

И вот в телеграм-канале с вакансиями я увидел злополучный пост про стажировку в МТС. Тогда я ещё не подозревал, что даже в таких крупных компаниях на собеседованиях может происходить настоящий трешачок.

Читать полностью »

Есть ли у AMD перспективы в AI-ML-DL. Часть 1 - 1

Привет! Я Ефим Головин, старший MLOps-инженер в Selectel. Некоторое время назад мы в отделе Data/ML начали задаваться вопросом: а как там поживает AMD? Понятно, что у них масса дел, но нас интересовало, скорее, что у них в плане AI/DL/ML. С NVIDIA все плюс-минус ясно, это стандарт. А вот AMD — что-то неизвестное. Я вообще предполагал, что у «красных» хотя бы в плане терминологии и документации все должно быть плюс-минус аналогично тому, как оно есть у NVIDIA. Но решил убедиться в этом, поэтому отправился изучать документацию обеих компаний и попал в дивный мир хаоса, бардака и разброса в терминах. Не могу держать в себе, давайте разбираться вместе. Начнем, как ни странно, с поиска истины в документации NVIDIA.Читать полностью »

Искусственный интеллект может казаться чуть ли не сверхразумом, ведь он обрабатывает тонны данных и выдает, как думают многие, истину в последней инстанции. На самом деле большие языковые модели, такие как ChatGPT, страдают от тех же когнитивных искажений, что и мы с вами: они самоуверенны, предвзяты и цепляются за знакомые шаблоны. Почему ИИ, созданный быть рациональным, так похож на нас в своих ошибках? И что это значит для бизнеса, медицины или управления умным городом? Давайте посмотрим недавнее исследование ученых и попробуем разобраться.

Читать полностью »
MLечный путь 2025 — знания, опыт, коммьюнити. Как это было? - 1

Привет! 23 апреля мы провели в Петербурге митап для ML-специалистов. Спикеры обсудили запуск LLM в продакшен, оптимизацию GPU-инференса, а также Edge-решения для медицины и агросектора. Минимум теории — больше кейсов от Selectel, Cloud.ru, Celsus и Русагро.

Как подобрать инфраструктуру под LLM? Как контейнеризировать GPU в многоарендных средах? Как запускать ML на комбайне или медицинском поезде без интернета? На эти вопросы ответили в четырех докладах на MLлечном пути.

А еще мы организовали питч-сессию для стартапов. Пять проектов на стадии pre-MVP боролись за призовой фонд в 100 000 бонусов. Победителей выбирали сами зрители. В тексте рассказываем, как все было.Читать полностью »

Это моя первая статья и я хотел бы начать ее с такого интересного эксперимента как "сбор гибрида для обучения нейронных сетей с помощью генетического алгоритма" и дополнительно рассказать про библиотеку Deap. Для данной статьи я подразумеваю, что вы уже знаете как устроены нейронные сети и как они обучаются.

Читать полностью »

Сомнения

В предыдущей статье я описал свой опыт обучения искусственного нейрона бинарной классификации и некоторые выявленные при этом особенности. Одной из выявленных особенностей была "обратная аномалия" - ситуация, при которой все объекты становились ошибочно классифицированными, а также ситуация, при которой коррекция весов приводила к увеличению количества ошибочно классифицированных объектов.

Читать полностью »

Вступление: очередная волна технопаники

Каждые несколько десятилетий люди пугаются собственных изобретений.
Паровые машины — конец ткацкого ремесла.
Компиляторы — смерть ручного кода.
Облачные сервисы — айтишники останутся без работы.

Сегодня в роли «страшилки» выступает искусственный интеллект. Заголовки кричат: «ChatGPT уволит программистов», «Нейросети заменят дизайнеров», «AGI поставит крест на человечестве».
Однако, если внимательно посмотреть на то, как работают и внедряются ИИ-системыЧитать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js
OSZAR »